MOMENTUM, IMPULSE, AND COLLISIONS

Calculate the center of mass of a triangular chunk of aluminum of mass M, length l, and height h.

 $\chi_{cm} = \frac{1}{M} \int x dm$, χ is the χ -distance from the origin dm is the mass of the strip located at χ M is the total mass of the triangle

In general, mass is surface density times area. so

The surface density of any object is: $O = \frac{M}{A}$

For our triangle: $A = \frac{1}{2}hl$ so : $\sigma = \frac{2M}{hl}$

The area, dA, of our strip at x is: dA = ydxSo: $dm = \sigma dA = \frac{2M}{h\ell} ydx$

continued 1

UST Physics, Johnston, Ruch

We want to integrate in x, so we have to rewrite y in terms of x. Using the law of similar triangles, we have:

$$\frac{h}{\ell} = \frac{y}{x} = y = x \frac{h}{\ell}$$
So, Finally, $dm = \frac{2M}{h\ell} x \frac{h}{\ell} dx$

$$dm = \frac{2M}{\ell^2} x dx$$
Then: $\chi_{cm} = \frac{1}{M} \left(x \frac{2M}{\ell^2} x dx \right)$

$$= \frac{2}{\ell^2} \left(x^2 dx = \frac{2}{\ell^2} \left(\frac{1}{3} x^3 \right)^{\ell} = \frac{2}{3} \frac{\ell^3}{\ell^3}$$

$$\chi_{cm} = \frac{2}{3} \ell$$

The y-axis is similar

$$y_{cm} = \frac{1}{M} ydm$$

In this case, consider the strip located at a vertical distance y From the origin

Now, similar triangles to get w in terms
of
$$y: \frac{h}{l} = \frac{s}{w} \Rightarrow \frac{h}{l} = \frac{h-y}{w} \Rightarrow w = \frac{l(h-y)}{h}$$

So:
$$dm = \frac{2M}{h} \frac{\chi}{h} (h-y) dy$$
 continued 1

50:
$$y_{cm} = \frac{1}{m} \int y \frac{2M}{h^2} (h-y) dy$$

$$= \frac{3}{h^2} \int (yh - y^2) dy = \frac{2}{h^2} \left(\frac{1}{2}hy^2 - \frac{1}{3}y^3 \right)_0^h$$

$$= \frac{2}{k^2} \left(\frac{1}{2}h^3 - \frac{1}{3}h^3 \right)$$

$$= h \left(1 - \frac{2}{3} \right)$$

$$= \frac{1}{k^2} \int (yh - y^2) dy = \frac{2}{h^2} \left(\frac{1}{2}hy^2 - \frac{1}{3}h^3 \right)$$

$$= h \left(1 - \frac{2}{3} \right)$$

$$= \frac{1}{k^2} \int (yh - y^2) dy = \frac{2}{h^2} \left(\frac{1}{2}hy^2 - \frac{1}{3}h^3 \right)$$

MOMENTUM, IMPULSE, AND COLLISIONS

Three particles are positioned at the vertices of an equilateral triangle. m_1 and m_2 lie on the x-axis and are the same mass. The center of mass of the system is exactly in the center of the triangle. What is m_3 ?

MOMENTUM, IMPULSE, AND COLLISIONS

An object with a mass of $5m_0$ explodes at rest breaking into three pieces. One of the pieces with a mass of m_0 travels in the x direction at 30.0 m/s. Another piece also with a mass of $2m_0$ travels in the y direction at 20.0 m/s. What is the magnitude and direction of the velocity of the last piece? What is the kinetic energy released in the explosion?

Conserve momentum - (or conserve
$$V_{cm}$$
)

2D: $\chi: O = M_0 V_1 + \lambda M_0 V_{3x} \Rightarrow V_{3x} = -V_2$
 $|V_3| = (V_3V_1)^2 + V_3^2$
 $|V_3| = (V_3V_1)^2 + V_3^2$