Sample Test 5 Phys 111, Fall 2010, Section 1

- 1) Derivations
- a) (10pts) Starting with the definition of linear Kinetic energy ($K = \frac{1}{2}mV^2$), show that rotational kinetic energy of a rigid body is $K = \frac{1}{2}I\omega^2$ where $I = \int r^2 dm$.
- b) (10pts) Starting with the definition of angular momentum ($L=m(\vec{r}\times\vec{V})$), show that the angular momentum of a rigid body is $L=I\omega$ where $I=\int r^2dm$.

Proofs given in another post.

- 2) Multiple Choice, 4 points each.
- 2.1) A wad of clay with mass m_c is thrown at a **thin rod** whose length is L and whose mass is $2m_c$. The rod is allowed to rotate about a pivot a distance d = L/4 from its center as in the picture below. What is the moment of inertia of the clay, stick combination after the impact?

a)
$$\frac{7}{6}m_c L^2$$
b) $\left(\frac{1}{6} + \frac{1}{8} + \frac{9}{16}\right)m_c L^2$
c) $\left(\frac{1}{12} + \frac{9}{16}\right)m_c L^2$
d) $\pi m_c L^2$

$$T = I_R + I_c$$

$$= \left[I_{cmR} + M_R d^3\right] + M_c \left(\frac{L}{\delta} + d\right)^2$$

$$= \left[\frac{1}{12}M_R L^2 + M_R \left(\frac{L}{4}\right)^2 + M_c \left(\frac{L}{\delta} + \frac{L}{4}\right)^2\right]$$

$$= \frac{1}{12}M_R L^2 + M_R \left(\frac{L}{4}\right)^2 + M_c \left(\frac{L}{\delta} + \frac{L}{4}\right)^2$$

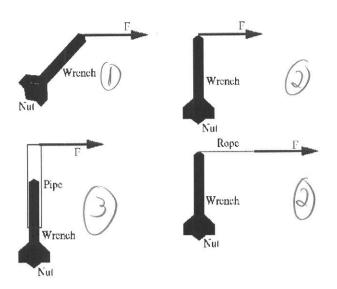
$$= \frac{1}{12}M_c L^2 + M_c \frac{1}{16}L^2 + \frac{q_h}{16}L^2$$

$$= \left[\frac{1}{6} + \frac{1}{8} + \frac{q}{16}\right]_{mcL}^2$$

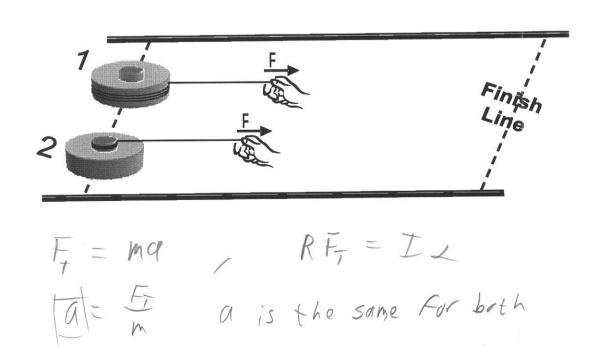
$$= \frac{V_c}{6}$$

2.2) A disk, a hoop, a solid sphere, and a hollow sphere, all with the same mass and radius, are having a race down an incline plane. Rank them in the order that they will arrive at the bottom of the ramp, 1 = winner, 4 = loser.

Disk 1/2 Hoop

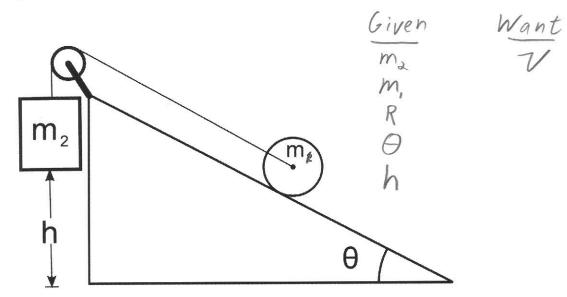

Solid Sphere 3/5

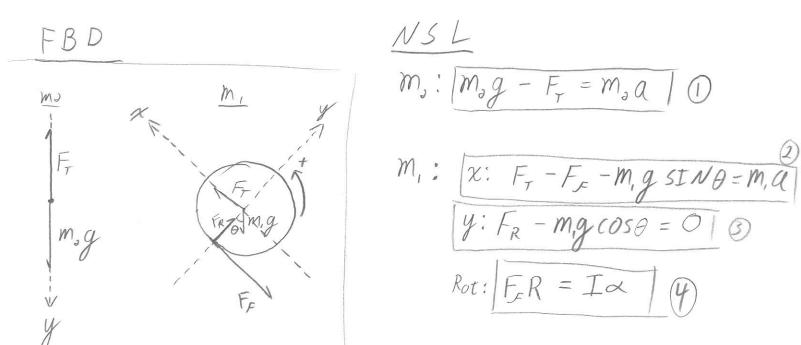
3 Hollow Sphere 3


- 2.3) Some children are riding on the outside edge of a merry-go-round. All of the children simultaneously move towards the center. Ignore friction in the rotation of the merry-go-round. When they move:
 - a) the moment of inertia of the system stays constant.
 - (b) the angular momentum of the system stays constant. c) the angular velocity of the system stays constant.
 - d) the merry-go-round slows down.

No Extrnal Torque, L= Constant

2.4) You are trying to turn a nut with a wrench. The same force is applied in each picture. Rank the pictures by torque, 1 = smallest. If any of the torques are the same, give them the same ranking.




- 2.5) Strings are wound around two identical pucks: one is around its outer rim; the other is around its axle. You pull both pucks from rest by using the same force F. Both pucks start to move on a frictionless surface. Which puck arrives at the finish line first?
 - A) Puck 1
 - B) Puck 2
 - (C))They arrive at the same time
 - D) There is not enough information to tell.

4) Mass m_2 is attached to a string that passes over a massless pulley. The other end of the string is attached to the central axle of a cylinder of mass m_1 and radius R. Assuming that $m_2 >> m_1$, the cylinder rolls without slipping up a slope that makes an angle θ with the horizontal.

Assuming that the system starts from rest, use **Torque and Kinematics**, to find an expression for the velocity, v, of m_2 after it falls a distance h.

continued

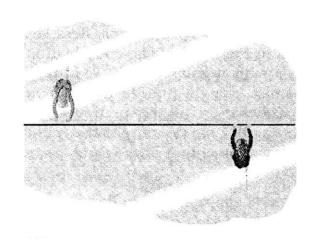
Extra Space

Eliminate
$$F_{\mathcal{L}}$$
 between eq (a) and (b):

From (b): $F_{\mathcal{L}} = \frac{I}{R} \times \mathbb{Z}$

into (a) $\left[F_{\mathcal{L}} - \frac{I}{R} \times - M, g \leq I N \theta = M, a \right]$ (5)

Solve ① For
$$F_{7}$$
: $F_{7} = m_{3}g - m_{3}a$


into ⑤ $m_{3}g - m_{3}a - \frac{\pi}{R}\alpha - m_{3}g SIN\theta = m_{3}a / 6$

Fix ω using $\alpha = R\omega$ and solve ⑥ For α
 $m_{3}g - m_{3}a - \frac{\pi}{R^{2}}a - m_{3}g SIN\theta = m_{3}a$
 $m_{3}g - m_{3}a - \frac{\pi}{R^{2}}a - m_{3}g SIN\theta = m_{3}a$
 $m_{3}g - m_{3}a - \frac{\pi}{R^{2}}a - m_{3}g SIN\theta = m_{3}a$
 $m_{3}g - m_{3}a - \frac{\pi}{R^{2}}a - m_{3}g SIN\theta = m_{3}a$
 $m_{3}g - m_{3}g - m_{3}g - m_{3}g SIN\theta = m_{3}a$
 $m_{3}g - m_{3}g - m_{3}g - m_{3}g SIN\theta = m_{3}a$
 $m_{3}g - m_{3}g - m_{3}g SIN\theta = m_{3}a$
 $m_{3}g - m_{3}g - m_{3}g SIN\theta = m_{3}a$

Kinematics
$$y = y_0^{-1} + y_0^{$$

Sample Test 5 Phys 111, Fall 2010, Section 1

- 4) Two skaters, each with a mass of 50 kg, approach each other along parallel paths separated by 3.0 m. They have equal and opposite velocities of 1.4 m/s. The first skater is holding one end of a long pole with negligible mass. As the skaters pass, the second skater grabs the other end of the pole. Assume that the ice is completely frictionless.
 - a) What is the moment of inertia about the center of mass of the resulting skater-pole system?
 - b) What is the resulting angular velocity of the skater-pole system?

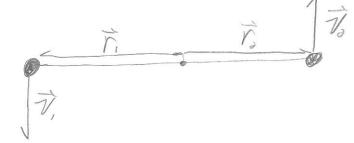
M = 50 kg V = 1.4 m/sd = 3.0 m

a)
$$\int_{K} \frac{cm}{d} \int_{X} \frac{cm}{d} \int$$

I=Zm, ri

$$I = m\left(\frac{d}{d}\right)^2 + m\left(\frac{d}{d}\right)^2 = \left| \frac{1}{2}md^2 \right|$$

b) LI


LA

The skaters will rotate about the center of mass. But, prior to grabbing the pole, They are not a rigid body.

$$\vec{r}_i \times \vec{m} \vec{v}_i + \vec{r}_i \times \vec{m} \vec{v}_i = I \omega$$

continued \

At the instant of pole grabbing, it looks like this:

 \vec{r}_{s} $\vec{r}_{s} \times \vec{v}_{s}$ and $\vec{r}_{s} \times \vec{v}_{s}$ give the same sign For I

Both are out of the Page.

$$mr_{1}v_{1} + mr_{3}v_{2} = I\omega, \quad r_{1}=r_{2}=\frac{d}{2}$$

$$\frac{1}{2}mdv + \frac{1}{2}mdv = I\omega$$

$$mdv = I\omega \implies \omega = \frac{mdv}{T}$$

And plug in I From part ai

$$\omega = 2 \frac{1.4}{3} = 0.27 \text{ rad/s}$$