Name:

For each of the closed cylinders shown below, are the electric fluxes through the top, the side wall, and the bottom positive (+), negative (-), or zero (0)? Is the net flux +, -, or 0? (Arrows represent electric field lines.)

a.

$$\Phi_{\text{top}} =$$

$$\Phi_{\text{wall}} =$$

$$\Phi_{\text{bot}} =$$

$$\Phi_{\text{net}} =$$

$$\Phi_{\text{top}} =$$

$$\Phi_{\text{wall}} =$$

$$\Phi_{\text{bot}} = 0$$

$$\Phi_{\text{net}} =$$

c.

$$\Phi_{\text{top}} =$$

$$\Phi_{\text{wall}} = \underline{\hspace{1cm}}$$

$$\Phi_{\text{bot}} =$$

$$\Phi_{\text{net}} =$$

d.

$$\Phi_{\text{top}} =$$

$$\Phi_{\text{wall}} = \underline{\qquad \qquad }$$

$$\Phi_{\text{bot}} = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$\Phi_{\text{net}} =$$

e.

$$\Phi_{\text{ton}} = \frac{+}{-}$$

$$\Phi_{\text{wall}} = \bigcirc$$

$$\Phi_{\text{bot}} =$$

$$\Phi_{\text{net}} =$$

f.

$$\Phi_{\text{top}} = \frac{}{}$$

$$\Phi_{\text{wall}} =$$

$$\Phi_{\text{bot}} = \frac{+}{-}$$

$$\Phi_{\text{net}} = \bigcirc$$

g.

$$\Phi_{\text{top}} =$$

$$\Phi_{\text{wall}} = \underline{\hspace{1cm}}$$

$$\Phi_{\text{hot}} =$$

$$\Phi_{\text{hot}} =$$

h.

$$\Phi_{\text{top}} = \frac{\sqrt{\sqrt{\sqrt{\sqrt{1 + \frac{1}{2}}}}}}{2}$$

$$\Phi_{\text{wall}} = \underline{\hspace{0.5cm}}$$

$$\Phi_{\text{bot}} = \underline{\qquad + \qquad}$$

$$\Phi_{\text{net}} = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

i.

$$\Phi_{\text{top}} =$$

$$\Phi_{--} = \uparrow$$

Calculate the net electric flux through the surfaces indicated.

Electrostatics – Set 5

Consider this equation: $\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{E_0}$

(a) Explain the equation in words.

The net Flux through a surface is proportional to the total charge enclosed.

(b) Provide a name for each parameter and indicate its units (dimensions).

$$\Phi_E = Electric Flux \left(\frac{N \cdot m^2}{C}\right)$$

$$\vec{E} = Electric Field \left(\frac{N}{c}\right)$$

 q_{in} = Charge enclosed by the surface

(c) What does the dot product do here?

Gives the component of the E Field perpendicular to the surface, which effectively provides the cross setion presented to the Kield.

(d) A thin spherical shell of radius 0.750 m surrounds a collection of charged particles, but the sphere itself is not charged. The electric field everywhere at the location of the shell is measured to be 890 N/C and points radially toward the center of the sphere. Find the net charge contained in the space inside the spherical shell.

$$\overline{\Phi}_{E} = \frac{q_{enc}}{\epsilon_{e}} \Rightarrow q_{enc} = \epsilon_{o} \Phi_{E}$$

THE E. A = - 890 1/2 474 (0.75m)= -6.3×10 2

Electrostatics - Set 5

Page 4

A charge of 170 μ C is at the center of a cube of side length 80.0 cm.

- (a) Find the total flux through the whole surface of the cube.
- (b) Find the flux through each face of the cube.
- (c) Speaking qualitatively, how would your answers above change if the charge were not at the cube's center?

a)
$$\Phi_{E} = \frac{9cm}{\epsilon_{0}} \implies \Phi_{E} = \frac{170 \times 10^{-6} \text{ C}}{(8.8 \times 10^{-6} \text{ C/N·m}^{2})}$$

$$\Phi_{E} = 1.9 \times 10^{7} \frac{N \cdot m^{2}}{C}$$

- b) There are six Faces, so each face has $\frac{1}{6}$ th of the net F|ux. $\Phi_{E,1face} = \frac{1.97 \times 10^{3} \frac{V \cdot m^{2}}{C}}{6} = \frac{3.2 \times 10^{6} \frac{V \cdot m^{2}}{C}}{C}$
- C) Each face would have a different flux;
 Those closer to q would be higher, but
 those Further away would be smaller by the
 same proportion. The net effect is
 that the net flux remains the same.

A solid sphere 2.0 cm in radius carries a uniform volume charge density. The electric field 1.0 cm from the sphere's center has a magnitude of 39,000 N/C and points outward from the sphere's center.

- (a) What total charge is contained in the sphere?
- (b) At what other distance does the electric field have a magnitude of 39,000 N/C?

a) Given
$$R = 0.0 \text{ cm}$$

$$E_{r} = 3.9 \times 10^{4} \text{ M/z}$$

$$r = 1.0 \text{ cm}$$

$$R = 0.0 \text{ cm}$$

$$Q = E_{r} \cdot A_{r} = E_{r$$

$$\begin{split}
\bar{D}_{E} &= \frac{Q_{enc}}{\varepsilon_{o}} =) \quad E_{r} \cdot 4\pi r_{s}^{2} = \frac{Q_{enc}}{\varepsilon_{o}} \\
\Gamma_{s}^{2} &= \frac{1}{E_{r}} \cdot \frac{Q_{enc}}{4\pi \varepsilon_{o}} = \frac{k Q_{enc}}{E_{r}} \\
\Gamma_{s} &= \left[\frac{k Q_{enc}}{E_{r}}\right]^{1/2} = \frac{1}{2} \cdot \frac{Q_{enc}}{2} \cdot \frac{1}{2} \cdot \frac{1$$

Gauss' Law:
$$\overline{\Phi}_{E} = \frac{2enc}{E_{G}}$$

a)
$$q_{enc} = -q = 7$$
 $\Phi_{E} = -\frac{q}{\epsilon_{\bullet}}$

Given

want

Er at each r

For a and b, r < R

$$\overline{\Phi}_{E} = \frac{q_{enc}}{\epsilon_{o}}$$

$$= 7 E \cdot A = \frac{1}{\epsilon_0} Q \frac{\% \gamma r}{\% \chi R},$$

$$\Rightarrow E.477 P^2 = \frac{1}{\epsilon_0} Q \frac{P^2}{R^3}$$

$$\Rightarrow E = \frac{1}{4\pi\epsilon_0} Q \frac{r}{R^3} \Rightarrow \boxed{E = \frac{kQ}{R^3} r}$$

a)
$$\frac{kQ}{R^3}r_a' = \frac{(9\times10^9\frac{Nm^3}{C^3})(14\times10^{-6}C)}{(25\times10^{-2})^3}(15\times10^{-6}C) = [1.2\times10^6\frac{Nm^3}{C}]$$

b)
$$\Gamma_b = R = 7 = \frac{kQ}{R^{1/2}}R = \frac{kQ}{R^2} = \frac{(9 \times 10^9 \frac{Nm^2}{C^2})(14 \times 10^{-6}c)}{(25 \times 10^{-2})^2}$$

c)
$$\Phi_{E} = \frac{q_{enc}}{\epsilon_{o}} \Rightarrow E \cdot 4\pi r_{c}^{2} = \frac{Q}{\epsilon_{o}} \Rightarrow E \cdot 4\pi r_{c}^{2} \Rightarrow E \cdot 4\pi r_{$$

b)
$$\Phi_{Eb} = \frac{Q_{enc}}{E}$$
, $Q_{enc} = E_0 \Phi_{ER} = E_0 E_R \cdot \overline{A_R} = E_0 E_R + MR^2$

$$= 7 \left| E_b = E_R \frac{R^2}{r_b^2} \right| = 7 \left| E_b = 26 \times 10^3 \frac{\text{M}}{2} \cdot \frac{(70 \text{ cm})^2}{(140 \text{ cm})^2} \right| = 3.5 \times 10^3 \frac{\text{M}}{2} \left| \frac{1}{140 \text{ cm}} \right|^2$$

Given
$$Q = -2Q$$
 Ea, Eb
 R
 Q
 $A = \frac{1}{2}R$
 $A = \frac{1}{2}R$

a)
$$\Phi_{E} = \frac{q_{enc}}{\epsilon_{o}}$$

at r_{a} , $q_{enc} = -2Q$

So: $E_{a} \cdot 4\pi r_{a}^{2} = \frac{-2Q}{\epsilon_{o}} \Rightarrow E_{a} = \frac{-2kQ}{r_{a}^{2}} \Rightarrow E_{a} = \frac{-8kQ}{R^{2}}$

b) at
$$\Gamma_b$$
, $Q_{enc} = -2Q + Q \Rightarrow Q_{enc} = -Q$
So: $F_b \cdot 4 \pi \Gamma_b^2 = \frac{-Q}{\epsilon_0} \Rightarrow \left[E_b = \frac{-kQ}{4R^2} \right]$

C) If the charge on the shell were doubled,

Answer (a) wouldn't change as Renc wouldn't charge

Answer (b) would go to zero, however, since

Qenc = -2Q + 2Q = 0