a) Find the magnetic field a distance R away from an infinitely long straight wire.
b) Find the magnetic field a perpendicular distance R away from the end of a semi-infinite wire,
c) Find the magnetic field a parallel distance R away from the end of a semi-infinite wire,

A current path shaped as shown produces a magnetic field. The semicircular arc subtends an angle of θ and has a radius r. The wire carried current I.

Derive an expression for the magnitude field vector at the center of the arc (point P).

Use the Biot-Savart law to derive a formula for the magnetic field a distance x along the axis of a vertical current loop with radius a and current I (the loop is perpendicular to the page). You may use Example 26.3 in your book as a guide, but be sure that you can eventually solve this problem with no assistance (e.g., on the exam). How does your result simplify for the special case of $x=0$?

We know that current-carrying wires produce magnetic fields, and we know that magnetic fields exert forces on current-carrying wires. Thus, two parallel current-carrying wires can either attract or repel each other, depending on their current directions.
(a) Consider two wires of length L (which is very long), separated by a distance d, that carry currents in the same direction. Do the wires attract or repel each other? What is the magnitude and direction of the force F_{21} exerted on wire 2 by wire 1 ? What is the force F_{12} exerted on wire 1 by wire 2 ?

Hint: Consider the B-field produced by wire 1 at the location of wire 2 . Use this result to calculate the force on wire 2.

(b) Now repeat the problem for two wires carrying currents in opposite directions.

Part of a long wire is bent into a semicircle of radius a, as in the figure below. A current I flows in the direction shown. Use the Biot-Savart law to find the magnetic field at the center of the semicircle (point P).

Magnetics - Set 3

The figure shows two current segments. The lower segment carries a current of I_{l} and includes a semicircular arc with radius r_{1} subtending an angle of 180 degrees a center point P. The upper segment carries current $I_{2}=2 I_{1}$ and includes a circular arc with radius $r_{2}=0.5 r_{1}$ and subtends an angle of 120 degrees with the same center point P.
a) What is the magnitude and direction of the net magnetic field at point P for the indicated current directions?

b) What are the magnitude and direction of the net magnetic field at point P if I_{l} is reversed.

Wolfson, Volume II, $2^{\text {nd }}$ Edition, 26.63
You may use the result $B=\frac{\mu_{0} I}{2 \pi r}$ from lecture, but be sure you know how to derive it for a long wire using the Biot-Savart law (e.g., on the exam).

